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Process Definition

Classical: ”It is an instance of an executing program”

Wikipedia: ”In computing, a process is the instance of a computer
program that is being executed by one or many threads.”

Missing point:
Every process executes in a different memory map!

0xF..F

0x0..0

process 1
0xF..F

0x0..0

process 2
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Memory Map

Definition: A translation between a physical memory space and a
virtual memory space

Physical space: It is the address space used when the CPU accesses
physically the memory chips.

Virtual space: It is the address space used by the process.

0xF..F

0x0..0

Virtual

0xF..F

0x0..0

Physical

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 5 / 61



Two processes

0xF..F

0x0..0

Process 1

0xF..F

0x0..0

Process 2

0xF..F

0x0..0

Physical

Every process has a different memory map, and same addresses can
reference different physical memory.
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Two processes

0xF..F

0x0..0

Process 1

0xF..F

0x0..0

Process 2

0xF..F

0x0..0

Physical

Every process has a different memory map, and same addresses can
reference different physical memory.

Why mappings are not bijective functions? Why do they share
physical regions?
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Processor execution modes

Supervisor mode

Can execute all machine instructions

Can reference all memory locations
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Processor execution modes

User mode

Can only execute a subset of instructions

Can only reference a subset of memory locations
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Processor execution modes

How to change processor mode

To enter in Priviledge mode
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Processor execution modes

How to change processor mode

To enter in Priviledge mode
Interrupt: External attention request from external device.

Serial output FIFO empty
Timer interrupt

Exception: Internal attention request from program execution.
Sometimes called traps.

Invalid memory access.
Invalid instruction executed.

syscall/trap instruction executed.
Sometimes called software interrupts.

To leave Priviledge mode

iret/eret instruction.
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Processor execution modes

Steps done by the processor to

Enter priviledge mode
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Processor execution modes

Steps done by the processor to

Enter priviledge mode

saves current program counter
changes execution mode
switches to kernel stack pointer
jumps to service routine
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Processor execution modes

Steps done by the processor to

Enter priviledge mode

saves current program counter
changes execution mode
switches to kernel stack pointer
jumps to service routine

Leave priviledge mode

restores execution mode
switches to user stack pointer
restores pogram counter
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Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}
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Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Call to syscall library wrapper

The call to fork jumps to a wrapper written in ARM assembly with
a SVC instruction

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Execution of SVC instruction

it saves the current program counter, change the execution mode
to Supervisor mode and jumps to specific assembly code for the
fork syscall.
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Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Execution of fork syscall

After saving all the registers it jumps to the C code where the fork

syscall is implemented.
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Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Returning from fork syscall

When the fork syscall finishes it returns to the assembly code
where all the registers are restored.
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Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Returning to User mode

When the iret instruction is executed then the original program
counter is restored and the processor returns to User mode.
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Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process execution

Processes change the state while its execution
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Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

User running

The process is running and executing user code and the processor is
running in User mode.
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Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Kernel running

The process is running and executing kernel code and the processor is
running in Kernel mode.
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Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

asleep

The process is not running and it is waiting for some event. The program
counter and the stack pointer are pointing to kernel memory.
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Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Ready to run

The proecess is not running but it is ready to run and it is waiting to be
scheduled. The program counter and the stack pointer are pointing to
kernel memory.
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Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

What is the kernel?

Only a state of processes.
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Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

What is the kernel?
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Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

What is the kernel?

Only a state of processes.

Ususally more of one process in kernel mode

But only one process running per hardware thread!.
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High and low memory

What happens if User mode can access the kernel memory?
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High and low memory

What happens if User mode can access the kernel memory?

Virtual memory space is split:

High memory: It only can be accessed by the kernel.
Low memory: It can be accessed by kernel and user.

0xF..F

0x0..0

Virtual

high memory

low memory

0xF..F

0x0..0

Physical
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High and low memory

What happens if User mode can access the kernel memory?

Virtual memory space is split:

High memory: It only can be accessed by the kernel.
Low memory: It can be accessed by kernel and user.

This mode of working, having accessible the user memory at any time,
simplifies memory transfers between kernel space and user space.

0xF..F

0x0..0

Virtual

high memory

low memory

0xF..F

0x0..0

Physical
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High and low memory (2)

What happens with more of one process?
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High and low memory (2)

What happens with more of one process?

0xF..F

0x0..0

Process 1

high memory

low memory

0xF..F

0x0..0

Process 2

high memory

low memory

0xF..F

0x0..0

Physical

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 10 / 61



High and low memory (2)

What happens with more of one process?

0xF..F

0x0..0

Process 1

high memory

low memory

0xF..F

0x0..0

Process 2

high memory

low memory

0xF..F

0x0..0

Physical

The mapping of the high memory is shared between all the process!
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High and low memory (2)

What happens with more of one process?

0xF..F

0x0..0

Process 1

high memory

low memory

0xF..F

0x0..0

Process 2

high memory

low memory

0xF..F

0x0..0

Physical

The mapping of the high memory is shared between all the process!
All the processes may be in kernel mode at some moment.
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Implementing processes

Context:
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.
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Context:

Sections / Software segments: Contiguous block of
memory.
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

text

data

heap

stack
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers

text

data

heap

stack
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register

text

data

heap

stack
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register

text

data

heap

stack
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register
Kernel program counter register text

data

heap

stack
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register
Kernel program counter register
Kernel stack register
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register
Kernel program counter register
Kernel stack register
Processes sleeps in kernel mode while they are
executing a syscall in user space!

text

data

heap

stack
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Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register
Kernel program counter register
Kernel stack register
Processes sleeps in kernel mode while they are
executing a syscall in user space!

Process status (open files, signal mask, ...).

text

data

heap

stack
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Context switch

Wikipedia: It refers to the process of storing the system state for one
task, so that task can be paused and another task resumed.
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Context switch

Wikipedia: It refers to the process of storing the system state for one
task, so that task can be paused and another task resumed.

Can be the scheduler a process?
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Context switch

Wikipedia: It refers to the process of storing the system state for one
task, so that task can be paused and another task resumed.

Can be the scheduler a process?

If the scheduler is a processs who schedule the scheduler to schedule
the other processes?
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Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Assumptions

We assume only 1 processor with only 1 core with only 1 hardware thread.
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Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Initial state

Process 1 is in User running

Process 2 is in asleep
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Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process 1 does a syscall

Process 1 is in Kernel running

Process 2 is in asleep
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Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process 1 wakeup Process 2

Process 1 is in Kernel running

Process 2 is ready to run
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Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process 1 calls the sched function

Process 1 is in ready to run

Process 2 is kernel running

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 13 / 61



Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process 2 executes eret

Process 1 is in ready to run

Process 2 is user running
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Memory system
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Direct mapping, 1 KB, 32Bytes/line

Capacity = 2ˆN bytes; Line Size = 2ˆM:

Bits [M-1:0] select the Byte within the Line (ByteInLine, BIL)
Bits [N-1:M] are the Index into the cache (a.k.a. “set”)
Bits [31:N] are the tag

Tag = 0x50 Index = 0x01 Byte = 0x01

31 9 4 0

Address = 0xa011

:

Valid

:

Dirty

0x50

:

Cache Tag

Byte 31 ... Byte 1 Byte 0 0

Byte 31 ... Byte 1 Byte 0 1

Byte 31 ... Byte 1 Byte 0 2

Byte 31 ... Byte 1 Byte 0 3

:

Byte 31 ... Byte 1 Byte 0 31
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Cache concepts

Hit: it means that the tag of the address is in the cache
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Cache concepts

Hit: it means that the tag of the address is in the cache

Miss: it means that the tag of the address is not in the cache
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Cache concepts

Hit: it means that the tag of the address is in the cache

Miss: it means that the tag of the address is not in the cache

Must take advantage of the locality principle
In computer science, locality of reference, also known as the principle
of locality, is the tendency of a processor to access the same set of
memory locations repetitively over a short period of time.

Temporal locality
Spatial locality.
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Cache concepts

Hit: it means that the tag of the address is in the cache

Miss: it means that the tag of the address is not in the cache

Must take advantage of the locality principle
In computer science, locality of reference, also known as the principle
of locality, is the tendency of a processor to access the same set of
memory locations repetitively over a short period of time.

Temporal locality
Spatial locality.

Evict: Replace a line with other with a different TAG.
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Multi level cache

We can use the locality principle to improve performance
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Multi level cache

We can use the locality principle to improve performance

Put the most recent data used in a fast cache inside of the core (L1)
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Multi level cache

We can use the locality principle to improve performance

Put the most recent data used in a fast cache inside of the core (L1)
Put recent data used in a slower but bigger cache inside of the cluster
(L2)
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Multi level cache

We can use the locality principle to improve performance

Put the most recent data used in a fast cache inside of the core (L1)
Put recent data used in a slower but bigger cache inside of the cluster
(L2)
Put data used in a slower bug bigger cache inside of the SoC or out of
the processor (L3)
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Multi level cache

We can use the locality principle to improve performance

Put the most recent data used in a fast cache inside of the core (L1)
Put recent data used in a slower but bigger cache inside of the cluster
(L2)
Put data used in a slower bug bigger cache inside of the SoC or out of
the processor (L3)
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Cache coherence

Bus snooping: A mechanism to ensure cache coherence between
multiple caches

Cache coherence:

Is the uniformity of shared resource data that ends up stored in
multiple local caches

Each cache constantly snoop on the bus

There are multiple protocols to keep the coherence:

MSI
MESI
MOESI
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Basic 5 stage pipeline

Fetch stage

It fetchs the next instruction from memory
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Basic 5 stage pipeline

Decode

It decodes the next instruction and generates all the signals needed by
next stages
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Basic 5 stage pipeline

ALU

It executes the arithmetic or logic operations needed by the instruction
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Basic 5 stage pipeline

Cache

It performs any memory read/write needed by the by the instruction
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Basic 5 stage pipeline

WB

It writes the result back to the register file in case of being needed.
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Instruction cache

In case of Hit
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Instruction cache

In case of Hit

No changes to existing control

In case of a miss

Hold the PC to avoid losing its value
Keep sending down a ”nop” instruction to decode
Send read request (PC) to the ARB
Wait until main memory responds with FILL
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Data cache

In case of Hit,

No changes to existing control

If we have a miss

Stall the pipeline
Send read request to the ARB
Wait until memory responds
Wait until main memory responds with FILL
Unstall the pipeline
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Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
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Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
For stores

This would be a big mistake!
If we did in parallel, we might write the wrong line!

First, we must check TAGs
Only in HIT, then we can write in the cache

Problem 2
When we need to EVICT a cache line that has been modified

First, we need to send it to memory
AKA ”Dirty replacement” or ”Dirty Eviction”
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Basic flow in the cache
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Problem 1: Can we fit in a single cycle?
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Proposal 1: Add a new pipe stage

Add new pipe stage: “tag lookup”

”Lookup” stage

Index the tag array with the index bits from @
Compare the tag output with the @
Pass on the hit/miss indication to next stage
In case of miss, send miss request to ARB

Cache stage

If load & HIT, read data and pass on to WB stage
If store & HIT, write data into data array
Else... Do nothing
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New Pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 26 / 61



Dirty Eviction

Eviction:

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Dirty:

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Dirty:

A line is dirty if it has been modified by the processor

Assume we have a load that misses
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Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Dirty:

A line is dirty if it has been modified by the processor

Assume we have a load that misses

Load accesses line 12 in the cache
What happens if line 12 is dirty?
Can we just fill on top of line 12?
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Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Dirty:

A line is dirty if it has been modified by the processor

Assume we have a load that misses

Load accesses line 12 in the cache
What happens if line 12 is dirty?
Can we just fill on top of line 12?

NOOOO!!
First we must send line 12 to memory
Only then can we go fetch the new line and fill it into the cache
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Use of the ”dirty bit”
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Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going
Send dirty line to memory

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going
Send dirty line to memory
Wait for ACK

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going
Send dirty line to memory
Wait for ACK
Request new line

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array
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Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going
Send dirty line to memory
Wait for ACK
Request new line
Fill the new data into the cache
Unlock pipeline
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What about loads
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What about loads

Loads don’t really need this extra lookup stage

So, what should we do with them?
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What about loads

Loads don’t really need this extra lookup stage

So, what should we do with them?

We like uniform pipelines

Loads will also use the lookup and c stages
Problem

The MEM to ALU stall will be longer (lower perf)
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Proposal 2: Pipeline with store buffer
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Store buffer

Holds stores that have not yet completed

When the C stage is free, then we copy the data from the store buffer
into the data array
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Store buffer

Holds stores that have not yet completed

When the C stage is free, then we copy the data from the store buffer
into the data array

Now loads need to read from the store buffer

To get the most recent data
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Control for a store in the “C” stage

Read tags and check for hit/miss

If miss, block pipeline and send req to ARB

Else, save the @ and the data into the SB

We have not written anything into the data array!!!
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Control for a store in the “C” stage

Read tags and check for hit/miss

If miss, block pipeline and send req to ARB

Else, save the @ and the data into the SB

We have not written anything into the data array!!!
What happens with multi cores?
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Control for the c stage for an ALU op

ALU result flows through to the WB stage

If SB is NOT empty

Take the oldest store from the SB
Write it into the Cache
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C stage control for a “load”

Index the tag array and determine hit/miss

Index the data array and read data (I’m feeling lucky)

Compare the load @ with all the @s in the SB

If hit, use the data from the SB
If miss (and we did hit in the cache) use the data from the cache
If miss in both places, go ask main memory
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Load miss

Let idx(L) be the index of the load into the cache

Let idx(SBi) be the index of store buffer entry “i”

What happens if we have idx(L) == idx(SBi)?
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Load miss

Let idx(L) be the index of the load into the cache

Let idx(SBi) be the index of store buffer entry “i”

What happens if we have idx(L) == idx(SBi)?

We have a pending write in the SB

If we make a blind request to mem

We fill the requested data into the data array
We will be “stepping on” the cache line that was pending to be written
by SBi and we will be causing a functional failure

Solution

Stall the pipeline
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Load miss

Let idx(L) be the index of the load into the cache

Let idx(SBi) be the index of store buffer entry “i”

What happens if we have idx(L) == idx(SBi)?

We have a pending write in the SB

If we make a blind request to mem

We fill the requested data into the data array
We will be “stepping on” the cache line that was pending to be written
by SBi and we will be causing a functional failure

Solution

Stall the pipeline
Drain the SB into the cache
Unstall the pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 36 / 61



SB Full?

If a store finds the SB full we then need to
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SB Full?

If a store finds the SB full we then need to
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SB Full?

If a store finds the SB full we then need to

Stall pipeline
At least drain 1 entry from the SB into the cache to leave one free
entry for the current store
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It’s proably a good idea to flush the full SB

Guidance for the compiler writer?
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SB Full?

If a store finds the SB full we then need to

Stall pipeline
At least drain 1 entry from the SB into the cache to leave one free
entry for the current store
Unstall pipeline

It’s proably a good idea to flush the full SB

Guidance for the compiler writer?

Interleave stores with arithmetic ops
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Virtual memory

Operating systems present a virtual memory address space to each
process running on the system.

Each and every one of the processes believes he is living in a machine
with 2n bytes, where “n” is the machine address width

Alpha: n=64, virtual address space 0..264 − 1
386: n=32, virtual address space 0..232 − 1
amd64 (x86 64): n=64, virtual address space 0..264 − 1
Arm aarch32: n=32, virtual address space 0..232 − 1
Arm aarch64: n=64, virtual address space 0..264 − 1

The OS controls access to physical memory and creates the illusion
that all processes have access to all memory
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A process view of memory
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Real (or Physical) Memory

Much smaller than virtual memory

4 Gbytes in a typical PC actual (232 bytes)

Managed by the operating system

Creates the illusion that each process has
access to 264 bytes of memory
When we run out of physical memory, the OS
copies back and forth into a swap disk
Virtual memory implementations

Segmented
Paged into same-sized blocks of memory
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Virtual to Physical Mapping
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Adress translation
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Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?
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Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?
We can mark this page to not go to the Store Buffer
We can mark this page as not cacheable

The alpha memory system

64 bit Virtual address space (264 bytes of virtual memory per process)
8 Kbytes pages (213 bytes)

What is the size of the page table itself?

Entries = 264bytes/213bytes = 251

Each entry needs 13 bits (but let’s round it up to16 bits)
Page table size = 251x2bytes = 252bytes
IMPOSSIBLE!!

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 43 / 61



Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?
We can mark this page to not go to the Store Buffer
We can mark this page as not cacheable

The alpha memory system

64 bit Virtual address space (264 bytes of virtual memory per process)
8 Kbytes pages (213 bytes)

What is the size of the page table itself?

Entries = 264bytes/213bytes = 251

Each entry needs 13 bits (but let’s round it up to16 bits)
Page table size = 251x2bytes = 252bytes
IMPOSSIBLE!!

Solution: Multi-level page table
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Alpha 21264 page table
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How do we do the translation in HW?

1 load could result in 3+1 accesses to memory
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How do we do the translation in HW?

1 load could result in 3+1 accesses to memory

Solution

Must take advantage of the locality principle
In computer science, locality of reference, also known as the principle
of locality, is the tendency of a processor to access the same set of
memory locations repetitively over a short period of time. There are
two basic types of reference locality, temporal and spatial locality.
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How do we do the translation in HW?

1 load could result in 3+1 accesses to memory

Solution

Must take advantage of the locality principle
In computer science, locality of reference, also known as the principle
of locality, is the tendency of a processor to access the same set of
memory locations repetitively over a short period of time. There are
two basic types of reference locality, temporal and spatial locality.
We will have a cache for “translations”

Translation Lookaside Buffer (TLB) or
Translation Buffer (TB)

Before accessing the cache

We will lookup the TLB to see if we have a translation
If we have a miss we will ask the OS for help
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TLB (CAM)
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New Pipeline
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Do we really need an extra stage?

Recall how we access the cache
using direct maping

How many bits do we need for
“idx”?

C = cache size (bytes)
L = line size (bytes)
Bits(idx) = log2(

C
L
)
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Virtual Index withPhysical Tag

If cache size ¡= page size

Example: Cache = 1KB, Line = 32B, Page = 8 KB
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Could we tag the cache with virtual addresses?

The answer is “yes”, but it is not easy

The reasons to NOT do so are

Even if we use a physical tag for the cache, we still need a TLB to
establish the validity of an access relative to its page (i.e., can’t write
into a read-only page)
If two processes share the same cache and cache their private memory
using the same virtual address we have a “synonim”!

If not taken care of, this can lead to one process using the wrong data
Possible solutions: flush cache on context switch
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New Pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 51 / 61



On a TLB Miss...

We must invoke the OS ...

We need to kill all the instruction younger than the offending
instruction
We must alter the PC register to jump into OS code that handles tlb
misses
We need to communicate info to the OS

@ that incurred in the TLB miss (i.e., lack of translation)
PC of the instruction that experienced the TLB miss

The OS then needs to

Search in the page table the translation for “@”
Insert the ¡@, translation¿ tuple into the TLB

Possibly removing some other cached translation

Jump back to the PC of the instruction that had the tlb miss
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TLB miss: additional datapath
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TLB Miss handling code (simplified)

store r0,0x8000 // save process state

store r1,0x8004 // save process state

store r2,0x8008 // save process state

movctrl rm0,r0 // copy miss PC

movctrl rm1,r1 // copy miss @

store r0,-4(sp) // make r1 our "return address"

call _tlbmiss // returns translation in r2

tlbwrite r0,r2 // install <virtual,physical> mapping into TLB

load 0x8000,r0 // restore process state

load 0x8004,r1 // restore process state

load 0x8008,r2 // restore process state

iret // will jump back to the address located in -4(sp), which is the address

// of the faulting instruction. Also, iret will lower the privilege mode

// back to \normal"

First, save the process state
Then read the info captured by the HW using special “movctrl rmX”
instructions

These instructions only work in privileged mode
The tlbmiss routine

Walks the page table and finds the translation for the failing address
and returns the translation

Then we need a new instruction to insert the ¡Virtual,Physical¿
mapping into the TLB

tlbwrite rx , ry
rx contains the Virtual Address
r contrains the Physical Address
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tlbwrite r4,r5
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Instruction TLB

A program’s PC is *also* in virtual space

Hence, we must ALSO translate the PC before we can index the
instruction cache

As we did for the data cache, if the size of the icache is ¡= page size
then we can do the translation in parallel
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iTLB
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ARM Virtual memory system
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Arm documentation

ARM Architecture Reference Manual Armv8, for Armv8-A
architecture profiles

https://developer.arm.com/documentation/ddi0487/fc/

Cortex-A Series Programmer’s guide for ARMv8

https://developer.arm.com/documentation/den0024/a/

Technical Reference manuals

https://developer.arm.com/documentation/ddi0500/j/

https://developer.arm.com/documentation/100095/0001

https://developer.arm.com/documentation/100023/0002

...
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Arm introducction

ARMv8 Overview

ARMv8A-overview.pdf

Basics about ARM memory model

ARMv8-VMSA.pdf

ARMv8 Memory management

ARMv8-Memory.pdf
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Os9 description
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