
MMU and virtual memory
A comprehensive view

Roberto E. Vargas Caballero

Clue Technologies

2021

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 1 / 61



Table of Contents

1 Processes

2 Memory system

3 ARM Virtual memory system

4 Os9 description

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 2 / 61



Processes

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 3 / 61



Process Definition

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 4 / 61



Process Definition

Classical: ”It is an instance of an executing program”

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 4 / 61



Process Definition

Classical: ”It is an instance of an executing program”

Wikipedia: ”In computing, a process is the instance of a computer
program that is being executed by one or many threads.”

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 4 / 61



Process Definition

Classical: ”It is an instance of an executing program”

Wikipedia: ”In computing, a process is the instance of a computer
program that is being executed by one or many threads.”

Missing point:
Every process executes in a different memory map!

0xF..F

0x0..0

process 1
0xF..F

0x0..0

process 2

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 4 / 61



Memory Map

Definition: A translation between a physical memory space and a
virtual memory space

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 5 / 61



Memory Map

Definition: A translation between a physical memory space and a
virtual memory space

Physical space: It is the address space used when the CPU accesses
physically the memory chips.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 5 / 61



Memory Map

Definition: A translation between a physical memory space and a
virtual memory space

Physical space: It is the address space used when the CPU accesses
physically the memory chips.

Virtual space: It is the address space used by the process.

0xF..F

0x0..0

Virtual

0xF..F

0x0..0

Physical

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 5 / 61



Two processes

0xF..F

0x0..0

Process 1

0xF..F

0x0..0

Process 2

0xF..F

0x0..0

Physical

Every process has a different memory map, and same addresses can
reference different physical memory.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 6 / 61



Two processes

0xF..F

0x0..0

Process 1

0xF..F

0x0..0

Process 2

0xF..F

0x0..0

Physical

Every process has a different memory map, and same addresses can
reference different physical memory.

Why mappings are not bijective functions? Why do they share
physical regions?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 6 / 61



Processor execution modes

Supervisor mode

Can execute all machine instructions

Can reference all memory locations

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

User mode

Can only execute a subset of instructions

Can only reference a subset of memory locations

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

How to change processor mode

To enter in Priviledge mode

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

How to change processor mode

To enter in Priviledge mode
Interrupt: External attention request from external device.

Serial output FIFO empty
Timer interrupt

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

How to change processor mode

To enter in Priviledge mode
Interrupt: External attention request from external device.

Serial output FIFO empty
Timer interrupt

Exception: Internal attention request from program execution.
Sometimes called traps.

Invalid memory access.
Invalid instruction executed.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

How to change processor mode

To enter in Priviledge mode
Interrupt: External attention request from external device.

Serial output FIFO empty
Timer interrupt

Exception: Internal attention request from program execution.
Sometimes called traps.

Invalid memory access.
Invalid instruction executed.

syscall/trap instruction executed.
Sometimes called software interrupts.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

How to change processor mode

To enter in Priviledge mode
Interrupt: External attention request from external device.

Serial output FIFO empty
Timer interrupt

Exception: Internal attention request from program execution.
Sometimes called traps.

Invalid memory access.
Invalid instruction executed.

syscall/trap instruction executed.
Sometimes called software interrupts.

To leave Priviledge mode

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

How to change processor mode

To enter in Priviledge mode
Interrupt: External attention request from external device.

Serial output FIFO empty
Timer interrupt

Exception: Internal attention request from program execution.
Sometimes called traps.

Invalid memory access.
Invalid instruction executed.

syscall/trap instruction executed.
Sometimes called software interrupts.

To leave Priviledge mode

iret/eret instruction.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

Steps done by the processor to

Enter priviledge mode

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

Steps done by the processor to

Enter priviledge mode

saves current program counter
changes execution mode
switches to kernel stack pointer
jumps to service routine

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

Steps done by the processor to

Enter priviledge mode

saves current program counter
changes execution mode
switches to kernel stack pointer
jumps to service routine

Leave priviledge mode

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes

Steps done by the processor to

Enter priviledge mode

saves current program counter
changes execution mode
switches to kernel stack pointer
jumps to service routine

Leave priviledge mode

restores execution mode
switches to user stack pointer
restores pogram counter

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Call to syscall library wrapper

The call to fork jumps to a wrapper written in ARM assembly with
a SVC instruction

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Execution of SVC instruction

it saves the current program counter, change the execution mode
to Supervisor mode and jumps to specific assembly code for the
fork syscall.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Execution of fork syscall

After saving all the registers it jumps to the C code where the fork

syscall is implemented.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Returning from fork syscall

When the fork syscall finishes it returns to the assembly code
where all the registers are restored.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Processor execution modes
User mode Kernel mode

...

fork();

...

fork:

mov x0,SYS_FORK

svc 0

...

ret

sys_fork:

...

bl fork

...

eret

fork() {

...

}

Returning to User mode

When the iret instruction is executed then the original program
counter is restored and the processor returns to User mode.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 7 / 61



Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process execution

Processes change the state while its execution

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 8 / 61



Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

User running

The process is running and executing user code and the processor is
running in User mode.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 8 / 61



Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Kernel running

The process is running and executing kernel code and the processor is
running in Kernel mode.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 8 / 61



Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

asleep

The process is not running and it is waiting for some event. The program
counter and the stack pointer are pointing to kernel memory.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 8 / 61



Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Ready to run

The proecess is not running but it is ready to run and it is waiting to be
scheduled. The program counter and the stack pointer are pointing to
kernel memory.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 8 / 61



Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

What is the kernel?

Only a state of processes.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 8 / 61



Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

What is the kernel?

Only a state of processes.

Ususally more of one process in kernel mode

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 8 / 61



Simplified process states

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

What is the kernel?

Only a state of processes.

Ususally more of one process in kernel mode

But only one process running per hardware thread!.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 8 / 61



High and low memory

What happens if User mode can access the kernel memory?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 9 / 61



High and low memory

What happens if User mode can access the kernel memory?

Virtual memory space is split:

High memory: It only can be accessed by the kernel.
Low memory: It can be accessed by kernel and user.

0xF..F

0x0..0

Virtual

high memory

low memory

0xF..F

0x0..0

Physical

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 9 / 61



High and low memory

What happens if User mode can access the kernel memory?

Virtual memory space is split:

High memory: It only can be accessed by the kernel.
Low memory: It can be accessed by kernel and user.

This mode of working, having accessible the user memory at any time,
simplifies memory transfers between kernel space and user space.

0xF..F

0x0..0

Virtual

high memory

low memory

0xF..F

0x0..0

Physical

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 9 / 61



High and low memory (2)

What happens with more of one process?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 10 / 61



High and low memory (2)

What happens with more of one process?

0xF..F

0x0..0

Process 1

high memory

low memory

0xF..F

0x0..0

Process 2

high memory

low memory

0xF..F

0x0..0

Physical

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 10 / 61



High and low memory (2)

What happens with more of one process?

0xF..F

0x0..0

Process 1

high memory

low memory

0xF..F

0x0..0

Process 2

high memory

low memory

0xF..F

0x0..0

Physical

The mapping of the high memory is shared between all the process!

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 10 / 61



High and low memory (2)

What happens with more of one process?

0xF..F

0x0..0

Process 1

high memory

low memory

0xF..F

0x0..0

Process 2

high memory

low memory

0xF..F

0x0..0

Physical

The mapping of the high memory is shared between all the process!
All the processes may be in kernel mode at some moment.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 10 / 61



Implementing processes

Context:

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

text

data

heap

stack

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers

text

data

heap

stack

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers

text

data

heap

stack

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register

text

data

heap

stack

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register

text

data

heap

stack

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register
Kernel program counter register text

data

heap

stack

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register
Kernel program counter register
Kernel stack register

text

data

heap

stack

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register
Kernel program counter register
Kernel stack register
Processes sleeps in kernel mode while they are
executing a syscall in user space!

text

data

heap

stack

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Implementing processes

Context:

Sections / Software segments: Contiguous block of
memory.

text: Executable code
data: Static data
heap: Dynamic (growing) data
stack: Temporary storage used by the processor.

Machine status

General purpose registers
Floating point registers
User program counter register
User stack register
Kernel program counter register
Kernel stack register
Processes sleeps in kernel mode while they are
executing a syscall in user space!

Process status (open files, signal mask, ...).

text

data

heap

stack

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 11 / 61



Context switch

Wikipedia: It refers to the process of storing the system state for one
task, so that task can be paused and another task resumed.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 12 / 61



Context switch

Wikipedia: It refers to the process of storing the system state for one
task, so that task can be paused and another task resumed.

Can be the scheduler a process?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 12 / 61



Context switch

Wikipedia: It refers to the process of storing the system state for one
task, so that task can be paused and another task resumed.

Can be the scheduler a process?

If the scheduler is a processs who schedule the scheduler to schedule
the other processes?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 12 / 61



Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Assumptions

We assume only 1 processor with only 1 core with only 1 hardware thread.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 13 / 61



Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Initial state

Process 1 is in User running

Process 2 is in asleep

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 13 / 61



Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process 1 does a syscall

Process 1 is in Kernel running

Process 2 is in asleep

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 13 / 61



Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process 1 wakeup Process 2

Process 1 is in Kernel running

Process 2 is ready to run

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 13 / 61



Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process 1 calls the sched function

Process 1 is in ready to run

Process 2 is kernel running

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 13 / 61



Scheduling a process

PROCESS 1

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

PROCESS 2

1

2

3 4

syscall

interrupt
eret

sleep

wakeup

sched

Interrupt,

Interrupt return

user

running

kernel

running

asleep ready to run

Process 2 executes eret

Process 1 is in ready to run

Process 2 is user running

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 13 / 61



Memory system

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 14 / 61



Direct mapping, 1 KB, 32Bytes/line

Capacity = 2ˆN bytes; Line Size = 2ˆM:

Bits [M-1:0] select the Byte within the Line (ByteInLine, BIL)
Bits [N-1:M] are the Index into the cache (a.k.a. “set”)
Bits [31:N] are the tag

Tag = 0x50 Index = 0x01 Byte = 0x01

31 9 4 0

Address = 0xa011

:

Valid

:

Dirty

0x50

:

Cache Tag

Byte 31 ... Byte 1 Byte 0 0

Byte 31 ... Byte 1 Byte 0 1

Byte 31 ... Byte 1 Byte 0 2

Byte 31 ... Byte 1 Byte 0 3

:

Byte 31 ... Byte 1 Byte 0 31

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 15 / 61



Cache concepts

Hit: it means that the tag of the address is in the cache

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 16 / 61



Cache concepts

Hit: it means that the tag of the address is in the cache

Miss: it means that the tag of the address is not in the cache

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 16 / 61



Cache concepts

Hit: it means that the tag of the address is in the cache

Miss: it means that the tag of the address is not in the cache

Must take advantage of the locality principle
In computer science, locality of reference, also known as the principle
of locality, is the tendency of a processor to access the same set of
memory locations repetitively over a short period of time.

Temporal locality
Spatial locality.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 16 / 61



Cache concepts

Hit: it means that the tag of the address is in the cache

Miss: it means that the tag of the address is not in the cache

Must take advantage of the locality principle
In computer science, locality of reference, also known as the principle
of locality, is the tendency of a processor to access the same set of
memory locations repetitively over a short period of time.

Temporal locality
Spatial locality.

Evict: Replace a line with other with a different TAG.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 16 / 61



Multi level cache

We can use the locality principle to improve performance

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 17 / 61



Multi level cache

We can use the locality principle to improve performance

Put the most recent data used in a fast cache inside of the core (L1)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 17 / 61



Multi level cache

We can use the locality principle to improve performance

Put the most recent data used in a fast cache inside of the core (L1)
Put recent data used in a slower but bigger cache inside of the cluster
(L2)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 17 / 61



Multi level cache

We can use the locality principle to improve performance

Put the most recent data used in a fast cache inside of the core (L1)
Put recent data used in a slower but bigger cache inside of the cluster
(L2)
Put data used in a slower bug bigger cache inside of the SoC or out of
the processor (L3)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 17 / 61



Multi level cache

We can use the locality principle to improve performance

Put the most recent data used in a fast cache inside of the core (L1)
Put recent data used in a slower but bigger cache inside of the cluster
(L2)
Put data used in a slower bug bigger cache inside of the SoC or out of
the processor (L3)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 17 / 61



Cache coherence

Bus snooping: A mechanism to ensure cache coherence between
multiple caches

Cache coherence:

Is the uniformity of shared resource data that ends up stored in
multiple local caches

Each cache constantly snoop on the bus

There are multiple protocols to keep the coherence:

MSI
MESI
MOESI

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 18 / 61



Basic 5 stage pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 19 / 61



Basic 5 stage pipeline

Fetch stage

It fetchs the next instruction from memory

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 19 / 61



Basic 5 stage pipeline

Decode

It decodes the next instruction and generates all the signals needed by
next stages

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 19 / 61



Basic 5 stage pipeline

ALU

It executes the arithmetic or logic operations needed by the instruction

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 19 / 61



Basic 5 stage pipeline

Cache

It performs any memory read/write needed by the by the instruction

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 19 / 61



Basic 5 stage pipeline

WB

It writes the result back to the register file in case of being needed.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 19 / 61



Instruction cache

In case of Hit

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 20 / 61



Instruction cache

In case of Hit

No changes to existing control

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 20 / 61



Instruction cache

In case of Hit

No changes to existing control

In case of a miss

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 20 / 61



Instruction cache

In case of Hit

No changes to existing control

In case of a miss

Hold the PC to avoid losing its value

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 20 / 61



Instruction cache

In case of Hit

No changes to existing control

In case of a miss

Hold the PC to avoid losing its value
Keep sending down a ”nop” instruction to decode

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 20 / 61



Instruction cache

In case of Hit

No changes to existing control

In case of a miss

Hold the PC to avoid losing its value
Keep sending down a ”nop” instruction to decode
Send read request (PC) to the ARB

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 20 / 61



Instruction cache

In case of Hit

No changes to existing control

In case of a miss

Hold the PC to avoid losing its value
Keep sending down a ”nop” instruction to decode
Send read request (PC) to the ARB
Wait until main memory responds with FILL

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 20 / 61



Data cache

In case of Hit,

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 21 / 61



Data cache

In case of Hit,

No changes to existing control

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 21 / 61



Data cache

In case of Hit,

No changes to existing control

If we have a miss

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 21 / 61



Data cache

In case of Hit,

No changes to existing control

If we have a miss

Stall the pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 21 / 61



Data cache

In case of Hit,

No changes to existing control

If we have a miss

Stall the pipeline
Send read request to the ARB

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 21 / 61



Data cache

In case of Hit,

No changes to existing control

If we have a miss

Stall the pipeline
Send read request to the ARB
Wait until memory responds

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 21 / 61



Data cache

In case of Hit,

No changes to existing control

If we have a miss

Stall the pipeline
Send read request to the ARB
Wait until memory responds
Wait until main memory responds with FILL

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 21 / 61



Data cache

In case of Hit,

No changes to existing control

If we have a miss

Stall the pipeline
Send read request to the ARB
Wait until memory responds
Wait until main memory responds with FILL
Unstall the pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 21 / 61



Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 22 / 61



Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
For stores

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 22 / 61



Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
For stores

This would be a big mistake!

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 22 / 61



Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
For stores

This would be a big mistake!
If we did in parallel, we might write the wrong line!

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 22 / 61



Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
For stores

This would be a big mistake!
If we did in parallel, we might write the wrong line!

First, we must check TAGs

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 22 / 61



Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
For stores

This would be a big mistake!
If we did in parallel, we might write the wrong line!

First, we must check TAGs
Only in HIT, then we can write in the cache

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 22 / 61



Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
For stores

This would be a big mistake!
If we did in parallel, we might write the wrong line!

First, we must check TAGs
Only in HIT, then we can write in the cache

Problem 2
When we need to EVICT a cache line that has been modified

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 22 / 61



Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
For stores

This would be a big mistake!
If we did in parallel, we might write the wrong line!

First, we must check TAGs
Only in HIT, then we can write in the cache

Problem 2
When we need to EVICT a cache line that has been modified

First, we need to send it to memory

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 22 / 61



Issues with our current pipeline

Problem 1

For loads&fetches, TAG&data can be accesed in parallel
For stores

This would be a big mistake!
If we did in parallel, we might write the wrong line!

First, we must check TAGs
Only in HIT, then we can write in the cache

Problem 2
When we need to EVICT a cache line that has been modified

First, we need to send it to memory
AKA ”Dirty replacement” or ”Dirty Eviction”

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 22 / 61



Basic flow in the cache

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 23 / 61



Problem 1: Can we fit in a single cycle?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 24 / 61



Proposal 1: Add a new pipe stage

Add new pipe stage: “tag lookup”

”Lookup” stage

Index the tag array with the index bits from @
Compare the tag output with the @
Pass on the hit/miss indication to next stage
In case of miss, send miss request to ARB

Cache stage

If load & HIT, read data and pass on to WB stage
If store & HIT, write data into data array
Else... Do nothing

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 25 / 61



New Pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 26 / 61



Dirty Eviction

Eviction:

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Dirty:

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Dirty:

A line is dirty if it has been modified by the processor

Assume we have a load that misses

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Dirty:

A line is dirty if it has been modified by the processor

Assume we have a load that misses

Load accesses line 12 in the cache
What happens if line 12 is dirty?
Can we just fill on top of line 12?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Dirty:

A line is dirty if it has been modified by the processor

Assume we have a load that misses

Load accesses line 12 in the cache
What happens if line 12 is dirty?
Can we just fill on top of line 12?

NOOOO!!

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Dirty Eviction

Eviction:

Replacing a line in the cache by another line

Dirty:

A line is dirty if it has been modified by the processor

Assume we have a load that misses

Load accesses line 12 in the cache
What happens if line 12 is dirty?
Can we just fill on top of line 12?

NOOOO!!
First we must send line 12 to memory
Only then can we go fetch the new line and fill it into the cache

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 27 / 61



Use of the ”dirty bit”

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 28 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going
Send dirty line to memory

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going
Send dirty line to memory
Wait for ACK

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going
Send dirty line to memory
Wait for ACK
Request new line

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going
Send dirty line to memory
Wait for ACK
Request new line
Fill the new data into the cache

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



Changes to the miss logic

In the lookup stage, we read the dirty array

If line is dirty and we have a miss

Stall pipeline (F, D, A)
C and WB must keep going
Send dirty line to memory
Wait for ACK
Request new line
Fill the new data into the cache
Unlock pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 29 / 61



What about loads

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 30 / 61



What about loads

Loads don’t really need this extra lookup stage

So, what should we do with them?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 30 / 61



What about loads

Loads don’t really need this extra lookup stage

So, what should we do with them?

We like uniform pipelines

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 30 / 61



What about loads

Loads don’t really need this extra lookup stage

So, what should we do with them?

We like uniform pipelines

Loads will also use the lookup and c stages
Problem

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 30 / 61



What about loads

Loads don’t really need this extra lookup stage

So, what should we do with them?

We like uniform pipelines

Loads will also use the lookup and c stages
Problem

The MEM to ALU stall will be longer (lower perf)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 30 / 61



Proposal 2: Pipeline with store buffer

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 31 / 61



Store buffer

Holds stores that have not yet completed

When the C stage is free, then we copy the data from the store buffer
into the data array

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 32 / 61



Store buffer

Holds stores that have not yet completed

When the C stage is free, then we copy the data from the store buffer
into the data array

Now loads need to read from the store buffer

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 32 / 61



Store buffer

Holds stores that have not yet completed

When the C stage is free, then we copy the data from the store buffer
into the data array

Now loads need to read from the store buffer

To get the most recent data

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 32 / 61



Control for a store in the “C” stage

Read tags and check for hit/miss

If miss, block pipeline and send req to ARB

Else, save the @ and the data into the SB

We have not written anything into the data array!!!

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 33 / 61



Control for a store in the “C” stage

Read tags and check for hit/miss

If miss, block pipeline and send req to ARB

Else, save the @ and the data into the SB

We have not written anything into the data array!!!
What happens with multi cores?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 33 / 61



Control for the c stage for an ALU op

ALU result flows through to the WB stage

If SB is NOT empty

Take the oldest store from the SB
Write it into the Cache

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 34 / 61



C stage control for a “load”

Index the tag array and determine hit/miss

Index the data array and read data (I’m feeling lucky)

Compare the load @ with all the @s in the SB

If hit, use the data from the SB
If miss (and we did hit in the cache) use the data from the cache
If miss in both places, go ask main memory

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 35 / 61



Load miss

Let idx(L) be the index of the load into the cache

Let idx(SBi) be the index of store buffer entry “i”

What happens if we have idx(L) == idx(SBi)?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 36 / 61



Load miss

Let idx(L) be the index of the load into the cache

Let idx(SBi) be the index of store buffer entry “i”

What happens if we have idx(L) == idx(SBi)?

We have a pending write in the SB

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 36 / 61



Load miss

Let idx(L) be the index of the load into the cache

Let idx(SBi) be the index of store buffer entry “i”

What happens if we have idx(L) == idx(SBi)?

We have a pending write in the SB

If we make a blind request to mem

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 36 / 61



Load miss

Let idx(L) be the index of the load into the cache

Let idx(SBi) be the index of store buffer entry “i”

What happens if we have idx(L) == idx(SBi)?

We have a pending write in the SB

If we make a blind request to mem

We fill the requested data into the data array
We will be “stepping on” the cache line that was pending to be written
by SBi and we will be causing a functional failure

Solution

Stall the pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 36 / 61



Load miss

Let idx(L) be the index of the load into the cache

Let idx(SBi) be the index of store buffer entry “i”

What happens if we have idx(L) == idx(SBi)?

We have a pending write in the SB

If we make a blind request to mem

We fill the requested data into the data array
We will be “stepping on” the cache line that was pending to be written
by SBi and we will be causing a functional failure

Solution

Stall the pipeline
Drain the SB into the cache

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 36 / 61



Load miss

Let idx(L) be the index of the load into the cache

Let idx(SBi) be the index of store buffer entry “i”

What happens if we have idx(L) == idx(SBi)?

We have a pending write in the SB

If we make a blind request to mem

We fill the requested data into the data array
We will be “stepping on” the cache line that was pending to be written
by SBi and we will be causing a functional failure

Solution

Stall the pipeline
Drain the SB into the cache
Unstall the pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 36 / 61



SB Full?

If a store finds the SB full we then need to

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 37 / 61



SB Full?

If a store finds the SB full we then need to

Stall pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 37 / 61



SB Full?

If a store finds the SB full we then need to

Stall pipeline
At least drain 1 entry from the SB into the cache to leave one free
entry for the current store

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 37 / 61



SB Full?

If a store finds the SB full we then need to

Stall pipeline
At least drain 1 entry from the SB into the cache to leave one free
entry for the current store
Unstall pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 37 / 61



SB Full?

If a store finds the SB full we then need to

Stall pipeline
At least drain 1 entry from the SB into the cache to leave one free
entry for the current store
Unstall pipeline

It’s proably a good idea to flush the full SB

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 37 / 61



SB Full?

If a store finds the SB full we then need to

Stall pipeline
At least drain 1 entry from the SB into the cache to leave one free
entry for the current store
Unstall pipeline

It’s proably a good idea to flush the full SB

Guidance for the compiler writer?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 37 / 61



SB Full?

If a store finds the SB full we then need to

Stall pipeline
At least drain 1 entry from the SB into the cache to leave one free
entry for the current store
Unstall pipeline

It’s proably a good idea to flush the full SB

Guidance for the compiler writer?

Interleave stores with arithmetic ops

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 37 / 61



Virtual memory

Operating systems present a virtual memory address space to each
process running on the system.

Each and every one of the processes believes he is living in a machine
with 2n bytes, where “n” is the machine address width

Alpha: n=64, virtual address space 0..264 − 1
386: n=32, virtual address space 0..232 − 1
amd64 (x86 64): n=64, virtual address space 0..264 − 1
Arm aarch32: n=32, virtual address space 0..232 − 1
Arm aarch64: n=64, virtual address space 0..264 − 1

The OS controls access to physical memory and creates the illusion
that all processes have access to all memory

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 38 / 61



A process view of memory

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 39 / 61



Real (or Physical) Memory

Much smaller than virtual memory

4 Gbytes in a typical PC actual (232 bytes)

Managed by the operating system

Creates the illusion that each process has
access to 264 bytes of memory
When we run out of physical memory, the OS
copies back and forth into a swap disk
Virtual memory implementations

Segmented
Paged into same-sized blocks of memory

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 40 / 61



Virtual to Physical Mapping

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 41 / 61



Adress translation

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 42 / 61



Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 43 / 61



Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?
We can mark this page to not go to the Store Buffer

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 43 / 61



Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?
We can mark this page to not go to the Store Buffer
We can mark this page as not cacheable

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 43 / 61



Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?
We can mark this page to not go to the Store Buffer
We can mark this page as not cacheable

The alpha memory system

64 bit Virtual address space (264 bytes of virtual memory per process)
8 Kbytes pages (213 bytes)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 43 / 61



Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?
We can mark this page to not go to the Store Buffer
We can mark this page as not cacheable

The alpha memory system

64 bit Virtual address space (264 bytes of virtual memory per process)
8 Kbytes pages (213 bytes)

What is the size of the page table itself?

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 43 / 61



Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?
We can mark this page to not go to the Store Buffer
We can mark this page as not cacheable

The alpha memory system

64 bit Virtual address space (264 bytes of virtual memory per process)
8 Kbytes pages (213 bytes)

What is the size of the page table itself?

Entries = 264bytes/213bytes = 251

Each entry needs 13 bits (but let’s round it up to16 bits)
Page table size = 251x2bytes = 252bytes
IMPOSSIBLE!!

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 43 / 61



Page table

One page table for each Unix process
Holds, for each virtual page

The virtual to physical mapping
The page protections (R, W, X)
Some other stuff?
We can mark this page to not go to the Store Buffer
We can mark this page as not cacheable

The alpha memory system

64 bit Virtual address space (264 bytes of virtual memory per process)
8 Kbytes pages (213 bytes)

What is the size of the page table itself?

Entries = 264bytes/213bytes = 251

Each entry needs 13 bits (but let’s round it up to16 bits)
Page table size = 251x2bytes = 252bytes
IMPOSSIBLE!!

Solution: Multi-level page table

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 43 / 61



Alpha 21264 page table

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 44 / 61



How do we do the translation in HW?

1 load could result in 3+1 accesses to memory

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 45 / 61



How do we do the translation in HW?

1 load could result in 3+1 accesses to memory

Solution

Must take advantage of the locality principle
In computer science, locality of reference, also known as the principle
of locality, is the tendency of a processor to access the same set of
memory locations repetitively over a short period of time. There are
two basic types of reference locality, temporal and spatial locality.

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 45 / 61



How do we do the translation in HW?

1 load could result in 3+1 accesses to memory

Solution

Must take advantage of the locality principle
In computer science, locality of reference, also known as the principle
of locality, is the tendency of a processor to access the same set of
memory locations repetitively over a short period of time. There are
two basic types of reference locality, temporal and spatial locality.
We will have a cache for “translations”

Translation Lookaside Buffer (TLB) or
Translation Buffer (TB)

Before accessing the cache

We will lookup the TLB to see if we have a translation
If we have a miss we will ask the OS for help

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 45 / 61



TLB (CAM)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 46 / 61



New Pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 47 / 61



Do we really need an extra stage?

Recall how we access the cache
using direct maping

How many bits do we need for
“idx”?

C = cache size (bytes)
L = line size (bytes)
Bits(idx) = log2(

C
L
)

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 48 / 61



Virtual Index withPhysical Tag

If cache size ¡= page size

Example: Cache = 1KB, Line = 32B, Page = 8 KB

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 49 / 61



Could we tag the cache with virtual addresses?

The answer is “yes”, but it is not easy

The reasons to NOT do so are

Even if we use a physical tag for the cache, we still need a TLB to
establish the validity of an access relative to its page (i.e., can’t write
into a read-only page)
If two processes share the same cache and cache their private memory
using the same virtual address we have a “synonim”!

If not taken care of, this can lead to one process using the wrong data
Possible solutions: flush cache on context switch

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 50 / 61



New Pipeline

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 51 / 61



On a TLB Miss...

We must invoke the OS ...

We need to kill all the instruction younger than the offending
instruction
We must alter the PC register to jump into OS code that handles tlb
misses
We need to communicate info to the OS

@ that incurred in the TLB miss (i.e., lack of translation)
PC of the instruction that experienced the TLB miss

The OS then needs to

Search in the page table the translation for “@”
Insert the ¡@, translation¿ tuple into the TLB

Possibly removing some other cached translation

Jump back to the PC of the instruction that had the tlb miss

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 52 / 61



TLB miss: additional datapath

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 53 / 61



TLB Miss handling code (simplified)

store r0,0x8000 // save process state

store r1,0x8004 // save process state

store r2,0x8008 // save process state

movctrl rm0,r0 // copy miss PC

movctrl rm1,r1 // copy miss @

store r0,-4(sp) // make r1 our "return address"

call _tlbmiss // returns translation in r2

tlbwrite r0,r2 // install <virtual,physical> mapping into TLB

load 0x8000,r0 // restore process state

load 0x8004,r1 // restore process state

load 0x8008,r2 // restore process state

iret // will jump back to the address located in -4(sp), which is the address

// of the faulting instruction. Also, iret will lower the privilege mode

// back to \normal"

First, save the process state
Then read the info captured by the HW using special “movctrl rmX”
instructions

These instructions only work in privileged mode
The tlbmiss routine

Walks the page table and finds the translation for the failing address
and returns the translation

Then we need a new instruction to insert the ¡Virtual,Physical¿
mapping into the TLB

tlbwrite rx , ry
rx contains the Virtual Address
r contrains the Physical Address

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 54 / 61



tlbwrite r4,r5

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 55 / 61



Instruction TLB

A program’s PC is *also* in virtual space

Hence, we must ALSO translate the PC before we can index the
instruction cache

As we did for the data cache, if the size of the icache is ¡= page size
then we can do the translation in parallel

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 56 / 61



iTLB

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 57 / 61



ARM Virtual memory system

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 58 / 61



Arm documentation

ARM Architecture Reference Manual Armv8, for Armv8-A
architecture profiles

https://developer.arm.com/documentation/ddi0487/fc/

Cortex-A Series Programmer’s guide for ARMv8

https://developer.arm.com/documentation/den0024/a/

Technical Reference manuals

https://developer.arm.com/documentation/ddi0500/j/

https://developer.arm.com/documentation/100095/0001

https://developer.arm.com/documentation/100023/0002

...

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 59 / 61

https://developer.arm.com/documentation/ddi0487/fc/
https://developer.arm.com/documentation/den0024/a/
https://developer.arm.com/documentation/ddi0500/j/
https://developer.arm.com/documentation/100095/0001
https://developer.arm.com/documentation/100023/0002


Arm introducction

ARMv8 Overview

ARMv8A-overview.pdf

Basics about ARM memory model

ARMv8-VMSA.pdf

ARMv8 Memory management

ARMv8-Memory.pdf

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 60 / 61

ARMv8A-overview.pdf
ARMv8-VMSA.pdf
ARMv8-Memory.pdf


Os9 description

Roberto E. Vargas Caballero (Clue Technologies) MMU and virtual memory 2021 61 / 61


	Processes
	Memory system
	ARM Virtual memory system
	Os9 description

